Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 15(1): 302, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097077

RESUMO

BACKGROUND: Polycystic liver disease (PLD) is an inherited disorder characterized by numerous cysts in the liver. Autosomal dominant polycystic kidney and liver disease (ADPKD and ADPLD, respectively) have been linked to pathogenic GANAB variants. GANAB encodes the α-subunit of glucosidase II (GIIα). Here, we report the identification of novel GANAB variants in an international cohort of patients with the primary phenotype of PLD using molecular inversion probe analysis. RESULTS: Five novel GANAB variants were identified in a cohort of 625 patients with ADPKD or ADPLD. In silico analysis revealed that these variants are likely to affect functionally important domains of glucosidase II α-subunit. Missense variant c.1835G>C p.(Arg612Pro) was predicted to disrupt the structure of the active site of the protein, likely reducing its activity. Frameshift variant c.687delT p.(Asp229Glufs*60) introduces a premature termination codon predicted to have no activity. Two nonsense variants (c.2509C>T; p.(Arg837*), and c.2656C>T; p.(Arg886*)) and splice variant c.2002+1G>C, which causes aberrant pre-mRNA splicing and affecting RNA processing, result in truncated proteins and are predicted to cause abnormal binding of α- and ß-subunits of glucosidase II, thus affecting its enzymatic activity. Analysis of glucosidase II subunits in cell lines shows expression of a truncated GIIα protein in cells with c.687delT, c.2509C>T, c.2656C>T, and c.2002+1G>C variants. Incomplete colocalization of the subunits was present in cells with c.687delT or c.2002+1G>C variants. Other variants showed normal distribution of GIIα protein. CONCLUSIONS: We identified five novel GANAB variants associated with PLD in both ADPKD and ADPLD patients supporting a common pathway in cystogenesis. These variants may lead to decreased or complete loss of enzymatic activity of glucosidase II which makes GANAB a candidate gene to be screened in patients with an unknown genetic background.


Assuntos
Cistos , Glucosidases/genética , Hepatopatias , Humanos , Hepatopatias/genética
2.
Gastroenterology ; 157(2): 481-491.e7, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31022403

RESUMO

BACKGROUND & AIMS: Polycystic liver disease is the most common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). There is need for robust long-term evidence for the volume-reducing effect of somatostatin analogues. We made use of data from an open-label, randomized trial to determine the effects of lanreotide on height-adjusted liver volume (hTLV) and combined height-adjusted liver and kidney volume (hTLKV) in patients with ADPKD. METHODS: We performed a 120-week study comparing the reno-protective effects of lanreotide vs standard care in 305 patients with ADPKD (the DIPAK-1 study). For this analysis, we studied the 175 patients with polycystic liver disease with hepatic cysts identified by magnetic resonance imaging and liver volume ≥2000 mL. Of these, 93 patients were assigned to a group that received lanreotide (120 mg subcutaneously every 4 weeks) and 82 to a group that received standard care (blood pressure control, a sodium-restricted diet, and antihypertensive agents). The primary endpoint was percent change in hTLV between baseline and end of treatment (week 120). A secondary endpoint was change in hTLKV. RESULTS: At 120 weeks, hTLV decreased by 1.99% in the lanreotide group (95% confidence interval [CI], -4.21 to 0.24) and increased by 3.92% in the control group (95% CI, 1.56-6.28). Compared with the control group, lanreotide reduced the growth of hTLV by 5.91% (95% CI, -9.18 to -2.63; P < .001). Growth of hTLV was still reduced by 3.87% at 4 months after the last injection of lanreotide compared with baseline (95% CI, -7.55 to -0.18; P = .04). Lanreotide reduced growth of hTLKV by 7.18% compared with the control group (95% CI, -10.25 to -4.12; P < .001). CONCLUSIONS: In this subanalysis of a randomized trial of patients with polycystic liver disease due to ADPKD, lanreotide for 120 weeks reduced the growth of liver and combined liver and kidney volume. This effect was still present 4 months after the last injection of lanreotide. ClinicalTrials.gov, Number: NCT01616927.


Assuntos
Cistos/tratamento farmacológico , Rim/patologia , Hepatopatias/tratamento farmacológico , Fígado/patologia , Peptídeos Cíclicos/administração & dosagem , Rim Policístico Autossômico Dominante/tratamento farmacológico , Somatostatina/análogos & derivados , Adulto , Cistos/diagnóstico por imagem , Cistos/etiologia , Cistos/patologia , Esquema de Medicação , Feminino , Humanos , Injeções Subcutâneas , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Hepatopatias/diagnóstico por imagem , Hepatopatias/etiologia , Hepatopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/efeitos dos fármacos , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Somatostatina/administração & dosagem , Resultado do Tratamento
3.
Curr Opin Gastroenterol ; 35(2): 65-72, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30652979

RESUMO

PURPOSE OF REVIEW: This review provides an outline of the most recent insights and significant discoveries regarding the genetic mechanisms involved in polycystic liver disease. RECENT FINDINGS: Polycystic liver disease includes a heterogeneous group of genetic disorders characterized by multiple hepatic cysts. Isolated liver cysts are caused by mutations in Protein Kinase C Substrate 80K-H (PRKCSH), SEC63, and LDL Receptor Related Protein 5 (LRP5), whereas Polycystic Kidney Disease (PKD)1, PKD2, and PKHD1 mutations cause kidney cysts often accompanied by liver cysts. Glucosidase II Alpha Subunit (GANAB) has been reported to cause both phenotypes. These mutations, together with the newly identified ones in SEC61B and Alpha-1,3-Glucosyltransferase (ALG8), can be found in ∼50% of patients with isolated polycystic liver disease. Somatic second hit-mutations are hypothesized as driving force leading to cystogenesis. Subsequently, loss of heterozygosity in the cystic tissue aggravates disease progression. All genetic mutations lead to reduced levels of functional polycystin-1. This ciliary protein is therefore considered to be the central factor in the development and severity of liver cysts. SUMMARY: Recent advances of the genetic complexity leading to hepatic cystogenesis provide novel candidate genes and important mechanistic insights with polycystin-1 as a common denominator.


Assuntos
Cistos/genética , Hepatopatias/genética , Animais , Humanos , Mutação , Peptídeos/metabolismo
4.
J Hepatol ; 68(4): 827-837, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29175241

RESUMO

A 41-year old female underwent a computed tomography (CT) scan in 2010 because of symptoms suggestive of appendicitis. Incidentally, multiple liver lesions characterised as cysts were detected. The presence of small to medium sized liver cysts (diameter between <1 cm and 4 cm) in all liver segments (>100 cysts) and absence of kidney cysts in the context of normal renal function led to the clinical diagnosis of autosomal dominant polycystic liver disease (ADPLD). Five years later she was referred to the outpatient clinic with increased abdominal girth, pain in the right upper abdomen and right flank, and early satiety. She had difficulties bending over and could neither cut her toenails nor tie her shoe laces. In her early twenties she had used oral contraception for five years. She has been pregnant twice. Clinical examination showed an enlarged liver reaching into the right pelvic region and crossing the midline of the abdomen. Laboratory testing demonstrated increased gamma-glutamyl transferase (80 IU/L, normal <40 IU/L) and alkaline phosphatase (148 IU/L, normal <100 IU/L) levels. Bilirubin, albumin and coagulation times were within the normal range. A new CT scan in 2015 was compatible with an increased number and size of liver cysts. The diameter of cysts varied between <1 cm and 6 cm (anatomic distribution shown [Fig. 2B]). There were no signs of hepatic venous outflow obstruction, portal hypertension or compression on the biliary tract. Height-adjusted total liver volume (htTLV) increased from 2,667 ml/m in 2012 to 4,047 ml/m in 2015 (height 172 cm). The case we present here is not uncommon, and prompts several relevant questions.


Assuntos
Cistos/terapia , Hepatopatias/terapia , Adulto , Cistos/complicações , Cistos/diagnóstico , Cistos/etiologia , Feminino , Aconselhamento Genético , Testes Genéticos , Humanos , Fígado/patologia , Hepatopatias/complicações , Hepatopatias/diagnóstico , Hepatopatias/etiologia
5.
Hum Mol Genet ; 26(21): 4190-4202, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973524

RESUMO

Mutations in the PRKCSH, SEC63 and LRP5 genes cause autosomal dominant polycystic liver disease (ADPLD). The proteins products of PRKCSH (alias GIIB) and SEC63 function in protein quality control and processing in the endoplasmic reticulum (ER), while LRP5 is implicated in Wnt/ß-catenin signaling. To identify common denominators in the PLD pathogenesis, we mapped the PLD interactome by affinity proteomics, employing both HEK293T cells and H69 cholangiocytes. Identification of known complex members, such as glucosidase IIA (GIIA) for PRKCSH, and SEC61A1 and SEC61B for SEC63, confirmed the specificity of the analysis. GANAB, encoding GIIA, was very recently identified as an ADPLD gene. The presence of GIIA in the LRP5 complex pinpoints a potential functional connection with PRKCSH. Interestingly, all three PLD-associated protein complexes included filamin A (FLNA), a multifunctional protein described to play a role in ciliogenesis as well as canonical Wnt signalling. As ciliary dysfunction may also contribute to hereditary liver cyst formation, we evaluated the requirement of PRKCSH and SEC63 for ciliogenesis and Wnt signaling. By CRISPR/Cas9 induced knockdown of both ADPLD genes in HEK293T cells and H69 cholangiocytes, we identified that their depletion results in defective ciliogenesis. However, only H69 knockouts displayed reduced Wnt3a activation. Our results suggest that loss of PRKCSH and SEC63 leads to general defects in ciliogenesis, while quenching of the Wnt signaling cascade is cholangiocyte-restricted. Interactions of all three PLD-associated protein complexes with FLNA may mark a common link between the ADPLD proteins and the cystogenic processes driving this disease.


Assuntos
Cílios/patologia , Cistos/metabolismo , Cistos/patologia , Glucosidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação ao Cálcio , Cílios/genética , Cílios/metabolismo , Cistos/genética , Retículo Endoplasmático/patologia , Técnicas de Inativação de Genes , Glucosidases/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares , Proteínas de Ligação a RNA , Via de Sinalização Wnt , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , alfa-Glucosidases/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
6.
Hepatol Int ; 10(5): 733-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27048617

RESUMO

A growing body of evidence has demonstrated that bile salts are important for liver regeneration following partial hepatectomy. The relative bile salt overload after partial liver resection causes activation of bile salt receptors in non-parenchymal (viz. the plasma membrane receptor TGR5) and parenchymal (viz. the intracellular receptor FXR) cells in the liver, thus, providing signals to the regenerative process. Impaired bile salt signaling in mice with genetic deficiency of Tgr5 or Fxr results in delayed liver regeneration after partial hepatectomy, and is accompanied by mortality in case of Fxr knock-out mice. Conversely, compensatory liver re-growth in hepatectomized mice can be stimulated by feeding of bile salts or alisol B 23-acetate, a natural triterpenoid agonist of Fxr. A large number of animal studies underscore the importance of strict maintenance of bile salt homeostasis for proper progression of liver regeneration. Both ileal and hepatic Fxr play a key role in regulation of bile salt homeostasis and, thus, preventing hepatotoxicity caused by excessive levels of bile salts. They further contribute to liver regeneration by induction of mitogenic factors. Agents that target bile salt receptors hold promise as drugs to stimulate liver regeneration in selected patients.


Assuntos
Ácidos e Sais Biliares/metabolismo , Regeneração Hepática/fisiologia , Animais , Hepatectomia , Humanos , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...